Нейронные Сети Рефераты

24.09.2017

Реферат - Нейронные сети - 1. Реферат - Нейронные сети (4. Доступные файлы (1): 1. Введение. При современном уровне развития техники, когда даже бытовые приборы оснащаются микропроцессорными устройствами, все более актуальным становится разработка новых систем автоматического управления. Но в связи с возрастающей сложностью объектов управления и с увеличением требований к системам управления за последнее десятилетие резко повысилась необходимость в создании более точных, более надежных систем управлении, обладающих большими функциональными возможностями.

Кафедра информационных систем в экономике. Реферат по информационным технологиям. Выполнил: . Нейронные сети в экономике Data mining реферат по экономике скачать бесплатно статистика данные обработка законометрности . Данная работа из раздела Программирование и Информатика, работа 2. Нейронные сети на сайте реферат плюс.

Интеллектуальные системы на основе искусственных нейронных сетей (ИНС) позволяют с успехом решать проблемы идентификации и управления, прогнозирования, оптимизации. Известны и другие, более традиционные подходы к решению этих проблем, однако они не обладают необходимой гибкостью и имеют существенные ограничения на среду функционирования. Нейронные сети позволяют реализовать любой требуемый для процесса нелинейный алгоритм управления при неполном, неточном описании объекта управления (или даже при отсутствии описания), создавать мягкую адаптацию, обеспечивающую устойчивость системе при нестабильности параметров. ИНС могут применяться для различных задач: аппроксимация функций, идентификация, прогнозирование, управление, классификация образов, категоригизация, оптимизация. Широкий круг задач, решаемый НС, не позволяет в настоящее время создавать универсальные, мощные сети, вынуждая разрабатывать специализированные НС, функционирующие по различным алгоритмам. В данной работе рассматривается возможность применения искусственной нейросети регулятора.

Проблема синтеза нейросетевых регуляторов рассматривается с двух позиций, а именно: прямые методы синтеза и косвенные методы синтеза нейросетевых систем управления. В данном случае рассматриваются прямые методы синтеза нейросетевых регуляторах совместно с наблюдающими устройствами.^Искусственные нейронные сети получили широкое распространение за последние 2. Нейронные сети (НС) успешно применяются в самых различных областях – бизнесе, медицине, технике, геологии, физике.

Такой впечатляющий успех определяется несколькими причинами: НС – исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости; они нелинейные по своей природе и кроме того, нейронные сети справляются с проблемой размерности, которая не позволяет моделировать линейные зависимости в случае большого числа переменных.^Несомненно, что технические средства, построенные на тех же принципах, что и биологические нейронные сети, обладают рядом схожих свойств. К таким свойствам относятся: массовый параллелизм,распределенное представление информации и вычисления,способность к обучению и способность к обобщению,адаптивность,свойство контекстуальной обработки информации, толерантность к ошибкам,низкое энергопотребление.

Можно выделить основные идеи, лежащие в основе нейронных сетей и нейромоделирования: . Нейросеть получает на входе набор входных сигналов и выдает соответствующий им ответ (выходные сигналы нейросети), являющийся решением задачи. Аппаратная реализация ИНС – нейрокомпьютер – имеет существенные отличия (как по структуре, так и по классу решаемых задач) от вычислительных машин, выполненных в соответствии с традиционной архитектурой фон Неймана. Сравнительные характеристики нейрокомпьютеров и традиционных компьютеров и традиционных компьютеров приведены в таблице 1.

Название: Реферат - Нейронные сети; Файл: 1.doc; Дата: 16.11.2011 14:40; Размер: 4149kb.

Таблица 1. 1 Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Категории сравнения^архитектуры. Нейрокомпьютер. Процессор.

Читать реферат online по теме 'Нейронные сети'. Раздел: Информационное обеспечение, программирование, 3198, Загружено: 30.09.2013 0:00:00. Дипломная работа 41 с., 13 рис., 10 источников, 4 прил. Ключевые слова: нейронные сети, многослойные нейронные сети, скрытый слой.

Сложный. Высокоскоростной. Один или несколько. Простой. Низкоскоростной. Большое количество. Память. Отделена от процессора. Локализована. Адресация не по содержанию. Интегрирована в процессор.

Распределенная. Адресация по содержанию. Вычисления. Централизованные.

Последовательные. Хранимые программы.

Распределенные. Параллельные. Самообучение. Надежность.

Высокая уязвимость. Живучесть. Специализация. Численные и символьные операции. Проблемы восприятия. Среда функционирования. Строго определена.

Строго ограничена. Без ограничений^Искусственные нейронные сети в настоящее время широко используются при решении самых разных задач и активно применяются там, где обычные алгоритмические решения оказываются неэффективными или вовсе невозможными. В числе задач, решение которых доверяют искусственным нейронным сетям, можно назвать следующие: распознавание текстов, системы безопасности и видео- наблюдения, автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование – и это далеко не все. С помощью нейросетей можно выполнять распознавание оптических или звуковых сигналов.

Аппаратные реализации ИНС идеально подходят для решения задач идентификации и управления, так как обеспечивают, благодаря параллельной структуре, чрезвычайно высокую скорость выполнения операций. Описанные возможности в основном относятся к слоистым нейронным сетям, обучаемым алгоритмом обратного распространения, и растущим нейронным сетям на основе вариантов алгоритма каскадной корреляции.

Но существуют и другие классы нейронных сетей . Всегда можно подобрать наиболее оптимальный для некоторой задачи . Нельзя придумать какую то одну универсальную ИНС, которая бы подошла для различных типов задач. Нейросети используют в двух вариантах: Строится нейросеть, решающая определенный класс задач,Под каждый экземпляр задачи строится некоторая нейросеть, находящая квази- оптимальное решение этой задачи. Их классификация представлена на рисунке 1. Рисунок 1. 1 Классификация ИНСНаиболее распространенным семейством сетей прямого действия являются многослойные персептроны, в них нейроны расположены слоями и соединены однонаправленными связями, идущими от входа к выходу сети.

Сети прямого действия являются статическими в том смысле, что на заданный вход они вырабатывают одну совокупность выходных значений, не зависящих от предыдущего состояния сети. Рекуррентные сети являются динамическими, так как в силу обратных связей в них модифицируются входы нейронов, что приводи к изменению состояния сети. Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Так же можно выделить два основных подхода к реализации нейросетей: цифровой и аналоговый. Вазодип Комбо 20 Инструкция. Преимуществом аналоговых реализаций являются: высокое быстродействие, надежность и экономичность.

Однако сфера возможного массового использования обучаемых аналоговых нейрочипов достаточно узка. Это обусловлено большой сложностью аппаратной реализации высокоэффективных обучающих алгоритмов и необходимостью специальной подготовки потенциальных пользователей для оптимальной организации адаптивного процесса. В то же время широкое распространение могут получить обученные аналоговые нейрокомпьютеры (нейросети) с фиксированной или незначительно подстраиваемой структурой связей – нейропроцессоры. Задача создания нейропроцессоров сводится к обучению цифровой нейросетевой модели нужному поведению на обычном цифровом компьютере. Сети также можно классифицировать по числу слоев. В этом случае важную роль играет нелинейность активационной функции, так как, если бы она не обладала данным свойством или не входила в алгоритм работы каждого нейрона, результат функционирования любой n- слойной нейронной сети сводился бы к перемножению входного вектора сигналов .

То есть фактически такая нейронная сеть эквивалентна однослойной нейросети с весовой матрицей единственного слоя W. Кроме того, нелинейность иногда вводится и в синаптические связи.^В качестве модели нейрона был выбран бинарный пороговый элемент, вычисляющий взвешенную сумму входных сигналов и формирующий на выходе сигнал величины 1, если эта сумма превышает определенное пороговое значение, и 0 – в противном случае. К настоящему времени данная модель не претерпела серьезных изменений. Были введены новые виды активационных функций. Структурная модель технического нейрона представлена на рисунке 1. Рисунок 1. 3 Формальная модель искусственного нейрона.

На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона, или входным сигналом нейросетевой модели. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе биологического нейрона. Вес определяет, насколько соответствующий вход нейрона влияет на его состояние. Все произведения суммируются, определяя уровень активации нейрона s. Состояние нейрона определяется по формуле., (1. Математически это можно выразить формулой: , (1. F– активационная функция нейрона.

Нейроны могут группироваться в сетевую структуру различным образом. Функциональные особенности нейронов и способ их объединения в сетевую структуру определяет особенности нейросети. Для решения задач идентификации и управления наиболее адекватными являются многослойные нейронные сети (МНС) прямого действия или многослойные персептроны. При проектировании МНС нейроны объединяют в слои, каждый из которых обрабатывает вектор сигналов от предыдущего слоя. Минимальной реализацией является двухслойная нейронная сеть, состоящая из входного (распределительного), промежуточного (скрытого) и выходного слоя. Рисунок 1. 4 Структурная схема двухслойной нейронной сети. Реализация модели двухслойной нейронной сети прямого действия имеет следующее математическое представление: , (1.

На низшем уровне иерархии находится входной слой, состоящий из сенсорных элементов, задачей которого является только прием и распространение по сети входной информации. Далее имеются один или, реже, несколько скрытых слоев. Каждый нейрон на скрытом слое имеет несколько входов, соединенных с выходами нейронов предыдущего слоя или непосредственно со входными сенсорами . Нейрон характеризуется уникальным вектором настраиваемых параметров . Функция нейрона состоит в вычислении взвешенной суммы его входов с дальнейшим нелинейным преобразованием ее в выходной сигнал: ^Следующий этап создания нейросети – это обучение.

Способность к обучению является основным свойством мозга. Для искусственных нейронных сетей под обучением понимается процесс настройки архитектуры сети (структуры связей между нейронами) и весов синаптических связей (влияющих на сигналы коэффициентов) для эффективного решения поставленной задачи. Обычно обучение нейронной сети осуществляется на некоторой выборке.

По мере процесса обучения, который происходит по некоторому алгоритму, сеть должна все лучше и лучше (правильнее) реагировать на входные сигналы. Выделяют три типа обучения: с учителем, самообучение и смешанный.

В первом способе известны правильные ответы к каждому входному примеру, а веса подстраиваются так, чтобы минимизировать ошибку. Обучение без учителя позволяет распределить образцы по категориям за счет раскрытия внутренней структуры и природы данных, выходы НС формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы. При смешанном обучении комбинируются два вышеизложенных подхода. Поскольку ошибка зависит от весов нелинейно, получить решение в аналитической форме невозможно, и поиск глобального минимума осуществляется посредством итерационного процесса – так называемого обучающего алгоритма. Разработано уже более сотни разных обучающих алгоритмов, отличающихся друг от друга стратегией оптимизации и критерием ошибок. Обычно в качестве меры погрешности берется средняя квадратичная ошибка (СКО): (1. Обучение нейросети производится методом градиентного спуска, т.

Отметим два свойства полной ошибки. Во- первых, ошибка E=E(W) является функцией состояния. W, определенной на пространстве состояний. По определению, она принимает неотрицательные значения.

Во- вторых, в некотором обученном состоянии W*, в котором сеть не делает ошибок на обучающей выборке, данная функция принимает нулевое значение.